Duration: (50:23) ?Subscribe5835 2025-02-06T00:41:42+00:00
Hsin-Yuan (Robert) Huang: What cannot be learned in the Quantum Universe?
(1:4:21)
Complexity of Learning and Creating Quantum Systems - Hsin-Yuan (Robert) Huang
(44:13)
Hsin Yuan Huang (Robert) - Learning theory in the quantum universe - IPAM at UCLA
(1:14:9)
Hsin-Yuan \
(1:21:6)
Shallow Quantum Circuits - Hsin-Yuan (Robert) Huang
(1:35:13)
QIP2023 | Learning to predict arbitrary quantum processes (Hsin-Yuan Huang)
(25:31)
QIP2023 | Learning many-body Hamiltonians with Heisenberg-limited scaling (Hsin-Yuan Huang)
(27:59)
Hsin-Yuan (Robert) Huang - Learning to predict arbitrary quantum processes - IPAM at UCLA
(50:23)
《梁祝》The Butterfly Lovers Concerto for Erhu | 二胡 | Conductor: Ke-Yuan Hsin, Erhu: Yun-Chen Tsai
(29:31)
Sibelius: Finlandia, Op. 26 | University of Texas University Orchestra (UTUO)
(9:2)
Franz Liszt - Les préludes, Symphonic Poem No. 3 | University of Texas University Orchestra
(14:42)
A tutorial on Quantum Approximate Optimization Algorithm (Oct 2020). Part 1: Theory
(52:38)
Dvorak: Carnival Overture, Op.92
(10:30)
Hsin-Yuan Shih - College Tennis Recruiting Video - Spring 2019
(4:29)
Quantum Advantage in Learning from Experiments | Qiskit Seminar Series
(1:17:42)
Bell's Inequality: The weirdest theorem in the world | Nobel Prize 2022
(13:22)
Recent Progress on Classical Shadow Tomography | Qiskit Quantum Seminar with Hong-Ye Hu
(1:59)
Provably Efficient Machine Learning for Quantum Many-Body Problems
(42:40)
IQIM Virtual Seminar, April 17, 2020 – Hsin-Yuan (Robert) Huang
(57:54)
QHack 2022: Hsin-Yuan Huang (Robert)—How powerful is classical AI from the standpoint of quantum AI?
(49:47)
QIP 2022 | Foundations for learning from noisy quantum experiments (Hsin-Yuan Huang)
(27:2)
Hsin-Yuan Huang (Robert) - Classical ML for quantum problems - IPAM at UCLA
(1:19:17)
Hsin Yuan Huang, Recent Advances in Predicting Properties of Quantum Systems
(39:39)
Nov. 2, 2022: Hsin Yuan (Robert) Huang (Caltech)
(1:56)
QIP2021 | Fundamental aspects of solving quantum problems with machine learning (Hsin-Yuan Huang)
(29:46)
Foundations for learning from noisy quantum experiments, Hsin Yuan (Robert) #QRST
(31:29)
QIP 2022 | Provably efficient machine learning for quantum many-body problems (Hsin-Yuan Huang)
(1:15)
2021-08-26 QML Meetup: Hsin-Yuan (Robert) Huang, Power of data in quantum machine learning
(1:1:20)