Duration: (43:33) ?Subscribe5835 2025-02-23T21:33:38+00:00
MSML2020 Invited Talk by Prof. Anna Gilbert, Yale University
(45:58)
MSML2020 Invited talk by Prof. Weinan E, Princeton University
(42:50)
MSML2020 Invited Talk by Prof. Roberto Car, Princeton University
(46:58)
MSML2020 Invited Talk by Prof. Lexing Ying, Stanford University
(48:11)
MSML2020 Invited Talk by Prof. Nathan Kutz, University of Washington
(56:47)
MSML2020 Invited Talk by Prof. Stanley Osher, University of California, Los Angeles
(42:26)
MSML2020 Invited Talk by Prof. Lenka Zdeborová, CNRS France
(43:33)
MSML2020 Invited Talk by Prof. George Karniadakis, Brown University
(43:43)
MSML2020 Invited Talk by Prof. Stéphane Mallat, Collége de France, ENS Paris, Flatiron Institute
(41:11)
محمد على كلاي رحمه الله يتكلم عن الجنة
(3:22)
L'apprentissage face à la malédiction de la grande dimension (1) - Stéphane Mallat (2017-2018)
(1:37:16)
Anima Anandkumar - Neural operator: A new paradigm for learning PDEs
(59:56)
Learning Physics Informed Machine Learning Part 2- Inverse Physics Informed Neural Networks (PINNs)
(30:52)
International Conference 2019
(3:26)
An extension of Physics Informed Neural Networks with a modal approach – IVADO Octobre Numérique
(13:16)
George Karniadakis - From PINNs to DeepOnets
(1:18:53)
DeepOnet: Learning nonlinear operators based on the universal approximation theorem of operators.
(58:12)
[T1 2019] L’intelligence Artificielle est-elle Logique ou Géométrique ? - Mallat
(1:12:1econd)
MSML2020 Conference Introduction
(4:15)
MSML2020 Paper Presentation - Hugo Cui
(14:19)
MSML2020 Paper Presentation - Karthik Aadithya
(18:7)