Duration: (7:30) ?Subscribe5835 2025-02-23T15:04:37+00:00
【機率與統計】第六講:估計 #4 Relative efficiency and consistency
(7:30)
【機率與統計】第六講:估計 #5 Interval estimation
(6:44)
【機率與統計】第六講:估計 #3 Unbiasedness
(8:33)
【機率與統計】第六講:估計 #6 Estimating the population mean
(8:37)
【機率與統計】第六講:估計 #1 Overview
(3:46)
【機率與統計】第六講:估計 #9 Estimating the population proportion
(7:38)
【機率與統計】第六講:估計 #2 Point estimation
(6:23)
如何成为商业分析师系列讲座第六讲:加课:Python编程基础
(1:11:58)
Randomized Controlled Trials
(29:42)
Review and intuition why we divide by n-1 for the unbiased sample | Khan Academy
(9:44)
Properties of Good Estimator
(1:23:5)
Relative Efficiency of Estimators Example
(16:41)
Central limit theorem | Inferential statistics | Probability and Statistics | Khan Academy
(9:49)
How To Find The Z Score, Confidence Interval, and Margin of Error for a Population Mean
(20:35)
Central Limit Theorem - Sampling Distribution of Sample Means - Stats \u0026 Probability
(1:1:9)
生物統計學-02.統計常用術語-續(Variance, Expected value, Unbiased estimate)
(50:22)
The Variability (precision) of Unbiased Estimators
(5:25)
「機率與統計」06-04「估計:Relative efficiency and consistency」
【機率與統計】第六講:估計 #10 Polls for elections
(7:8)
6 4估计量的无偏性与相合性
(10:6)
【機率與統計】第六講:估計 #11 Estimating the population variance
(6:)
「機率與統計」06-05「估計:Interval estimation」
「機率與統計」06-03「估計:Unbiasedness」
「機率與統計」06-06「估計:Estimating the population mean」
5 4 总体均数和概率的区间估计
(15:7)