Duration: (11:6) ?Subscribe5835 2025-02-22T07:23:42+00:00
@btechmathshub7050 If 'a' is an element of a group G such that 0(a)=n then a^m =e iff n/m
(12:24)
@btechmathshub7050 If f:A-B is a function and IA,IB then prove that foIA=IBof=f -Thoerem Functions
(9:50)
@btechmathshub7050 If f:A-B,g:B-C are two bijections then (gof)inverse=f inverse o g inverse
(11:6)
@btechmathshub7050 If f:A-B,g:B-C,h:C-D then prove that ho(gof)=(hog)of. Theorem Discrete Mathem
(9:20)
@btechmathshub7050 If f:A-B is bijective then Prove that I) fof inverse=IB ii) f inverse of=IA
(9:18)
BAYE'S THEOREM PROBLEMS IN TELUGU
(18:6)
Introduction to Conditional Probability | Don't Memorise
(5:4)
Discrete random variable problem/ application of discrete random variable
(10:22)
11. Inverse Z-Transform by Partial Fraction Method | Problem #1 | Complete Concept
(10:51)
Moment Generating Functions (Part 1)
(8:25)
Change the Order of Integration | Numericals | Double Integration | Maths 1
(19:19)
@btechmathshub7050 EUCLIDEAN ALGORITHM -Number Theory - MFCS - DMS - DMGT Proof with example
(18:)
Change Of Order Of Integration Part-1-Mathematics-2
(7:)
Solving ALL integrals from the 2025 MIT Integration Bee Finals
(36:18)
Exact Differential Equations
(6:9)
@btechmathshub7050
(13:16)
@btechmathshub7050 Group Theory- problems to Show that (G,.) is an Abelian Group.
(17:26)
@btechmathshub7050 Descriptive Statistics# Data Science #Introduction# probability and statistics
(4:55)
@btechmathshub7050 Theorem- If f:A-B,g:B-A functions n gof=IA and fog=IB then f is bijective
(15:21)
@btechmathshub7050 Inverse Z-Transforms By Partial Fractions
(9:45)
@btechmathshub7050 Rules of Conditional Proof -Mathematical Logics -MFCS - Imp problems -Solutions
(23:35)
@btechmathshub7050 Evaluation of Integrals using Residues - Integration around unit circle.
(19:56)
(7:30)
@btechmathshub7050 To show that the set of even integers are Abelian Group. Problems to S.T Abelia
(19:6)
@btechmathshub7050 Binomial Distribution -Problem -Probability distribution
(12:32)
@btechmathshub7050 To find poles and corresponding Residues of the function-complex Analysis
(10:11)
(8:43)
@btechmathshub7050 Group Theory- Congruence Relation -Problems on addition modulo m and multiplic
(18:22)
@btechmathshub7050 Problem Using Residues Theorem - Integration Using Residues - Complex Analysis
(7:10)