Duration: (6:36) ?Subscribe5835 2025-02-13T06:35:59+00:00
MATH3714, Sectiot 11.4: Orthogonal Inputs
(6:36)
MATH3714, Section 2.5: Normal Equations in R
(10:50)
MATH3714, Section 12.2: Standardising the Variables
(13:3)
MATH3714, Section 15.1: Factors
(12:27)
MATH3714, Section 11.1: Improving the Model Fit
(8:36)
MATH3714, Section 2.2: Least Squares Estimates
(23:44)
MATH3714, Section 11.3: Power Transforms
(11:54)
MATH3714, Section 10.2: Detecting Multicollinearity
(13:4)
011. M-Estimation: A Practicing Statistician's Best Friend (Conceptual, Theory, and Application)
(31:35)
Ridge regression explained: Regression robust to multicollinearity (Excel)
(18:16)
Mplus Multilevel Regression Analysis Explained
(17:52)
24. Robustness to Dataset Shift
(1:15:16)
Linear regression | hypothesis testing
(9:50)
Train and Validate a Multiple Linear Regression Model in R
(18:32)
TS-3: Time series models for finance
(1:2:11)
R Markdown TUTORIAL | A powerful tool for LEARNING R (IN 45 MINUTES)
(45:22)
STAT115 Chapter 5.2 Differential RNA-seq
(25:20)
LINEAR MODELS | LEC-12 | Mastering Cochran's Theorems \u0026 Quadratic Forms in Linear Models
(1:11:7)
MATH3714, Section 1: Simple Linear Regression
(17:15)
MATH3714, Section 7.3: Testing a Single Coefficient
(4:43)
MATH3714, Section 15.2: Interactions
(12:50)
MATH3714, Section 5.1: The Estimation Error
(11:36)
MATH3714, Section 10.1: The Effect of Multicollinearity
(8:55)
MATH3714, Section 6.2: Confidence Regions
(31:1econd)
MATH3714, Section 18.2: Iterative Methods
(13:33)
MATH3714, Section 12.1: Ridge Regression
(21:24)
MATH3714, Section 14.1: Exhaustive Search
(12:4)
MATH3714, Section 18.3: Objective Functions
(8:47)
MATH3714, Section 5.3: Hypthesis Tests
(3:36)