Duration: (14:33) ?Subscribe5835 2025-02-27T05:40:19+00:00
EE769-9-1 Combining Models - Introduction and Hypothesis Spaces
(20:37)
EE769-9-2 Combining Models - Ensembles
(21:40)
EE769-9-5 Combining Models - Boosting
(13:53)
EE769-9-3-1 Combining Models - Decision Trees 1
(19:28)
EE769-9-3-2 Combining Models - Decision Trees 2
(14:33)
EE769 2 9 Basic Math for ML - Entropy, and joint, conditional, marginal distributions
(15:15)
Overhyped Physicists: Richard Feynman
(12:22)
Lecture 13 : Probability Density Estimation - IV
(56:40)
Statistical Machine Learning Part 26 - Kernel PCA
(54:28)
Lecture 07 - Seismic Hazard Analysis
(34:30)
16. Learning: Support Vector Machines
(49:34)
Derive the Dual Formulation for Support Vector Machines [Lecture 3.3]
(23:41)
Ali Ghodsi, Deep Learning, Attention mechanism, self-attention, S2S, Fall 2023, Lecture 9
(1:17:52)
Kernel density estimation (Excel)
(13:58)
10.4 Non-Linear Principal Component Analysis (UvA - Machine Learning 1 - 2020)
(21:49)
Cluster validation: Silhouette score, Davies-Bouldin score, Calinski-Harabasz score - [Python]
(14:53)
EE769-9-4 Combining Models - Model randomization and random forests
(9:6)
EE769-7-1-4 Neural Networks - Layers and their function
(21:28)
EE769 1 1 Introduction to Machine Learning
(58:29)
Lecture 9 | Machine Learning (Stanford)
(1:14:19)
ML Project Presentation EE769
(14:54)
EE769 1 2 2 ML for Smart Monkeys
(34:37)