Duration: (59:44) ?Subscribe5835 2025-02-08T12:29:24+00:00
Training LLMs at Scale - Deepak Narayanan | Stanford MLSys #83
(55:59)
Notes on AI Hardware - Benjamin Spector | Stanford MLSys #88
(1:16:48)
FlashAttention - Tri Dao | Stanford MLSys #67
(58:58)
AI Systems in Government: Challenges \u0026 Opportunities - Jared Dunnmon | Stanford MLSys#100
(52:27)
The Next 100x - Gavin Uberti | Stanford MLSys #92
(59:21)
Text2SQL: The Dream versus Reality - Laurel Orr | Stanford MLSys #89
(57:5)
Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)
(1:44:31)
what i eat as a college student | stanford university
(14:58)
Stanford CS229: Machine Learning - Linear Regression and Gradient Descent | Lecture 2 (Autumn 2018)
(1:18:17)
The Venture Mindset: Mastering Venture Capital with Ilya Strebulaev
(1:18:31)
Debugging ML in Production feat. Shreya Shankar | Stanford MLSys Seminar Episode 12
(59:18)
Open Pretrained Transformers - Susan Zhang | Stanford MLSys #77
(1:5)
Reshaping ML with Compilers feat. Jason Knight | Stanford MLSys Seminar Episode 22
(59:39)
Stanford LEAD: Meet a LEADer November, 2024
(1:1:6)
Machine Learning 1 - Linear Classifiers, SGD | Stanford CS221: AI (Autumn 2019)
(1:20:34)
The Missing Link in ML Infrastructure feat. Josh Tobin | Stanford MLSys Seminar Episode 11
(1:1:23)
Musing On LLMs - Stanford Engineering Everywhere: CS229 \u0026 Stanford: CS25
(10:)
Declarative Machine Learning with Ludwig feat. Piero Molino | Stanford MLSys Seminar Episode 13
(1:33)
Professional Norms in Generative AI - Rob Reich | Stanford MLSys #74
(1:37)
Teaching LLMs to Use Tools at Scale - Shishir Patil | Stanford MLSys #98
(1:6:34)
Deep Recommender Systems at Facebook feat. Carole-Jean Wu | Stanford MLSys Seminar Episode 24
(1:5:6)
Automating Enterprises With Foundation Models - Avanika Narayan \u0026 Michael Wornow | Stanford MLSys#99
(1:8:55)
Efficiently Modeling Long Sequences with Structured State Spaces - Albert Gu | Stanford MLSys #46
(57:19)
Causal AI for Systems feat. Pooyan Jamshidi | Stanford MLSys Seminar Episode 38
(1:5:36)
Open-Source Systems for Federated Learning | Stanford MLSys #48
(56:10)
How Netflix does MLSys feat. Savin Goyal | Stanford MLSys Seminar Episode 17
(1:1:)
Monarch Mixer: Making Foundation Models More Efficient - Dan Fu | Stanford MLSys #86
(56:32)