Duration: (12:10) ?Subscribe5835 2025-02-15T10:52:38+00:00
6840-10-12-1: Ch.3 - Overview
(4:33)
6840-10-07-5: Chapter 2 - LR - Diagnosis - Other methods
(2:19)
6840-10-12-4: Ch.3 - Inference - A test by the difference of deviations
(4:25)
6840-10-26-3: Prospective and Retrospective Sampling
(10:54)
6840-10-14-4: Ch.3 - Overdispersion - Beta Distribution
(3:41)
6840-10-19-2: 3.5 QMLE - General theory
(5:17)
6840-10-12-3: Inference - A test by deviance
(8:58)
6840-10-14-1: Ch.3 - Overdispersion - Concepts
(12:10)
6840-10-28-3: Ch.5.1 - Count regression - An Overview
(4:37)
ASÍ ERA EL EXAMEN DE LA UNI EN LOS OCHENTAS | UNI 1988
(1:10:1econd)
Quasi-Poisson and negative binomial regression models
(16:41)
Model selection and evaluation: overdispersion, quasi-Poisson
(25:33)
Logistic Regression [Simply explained]
(14:22)
Calculating sample size and power
(28:)
Negative Binomial Regression model | Statistical model| Count Data model
(19:41)
Logistic Regression: Estimating Parameters
(17:56)
OMSI 2 | MILLENNIUM BRT II - MB O-500UA | Linha 6840-10: Term. JD. Jacira x Term. Capelinha
(44:54)
6840-10-14-2: Ch.3 - Overdispersion - Estimation \u0026 Testing
(7:32)
6840-10-14-3: Ch.3 - Overdispersion - Example - Trout egg
(13:25)
6840-10-19-1: QMLE - An overview
(5:55)
6840-10-12-6: Ch.3 - Pearson's chi-square statistic \u0026 test
(6:5)
6840-10-26-4: Ch.4.4 - Prediction (C.I.) \u0026 Effective Doses
(12:38)
6840-10-07-7: Chapter 2 - LR - Bias reduction logistic regression (and other remedies)
(9:45)
6840-10-12-2: Ch.3 - Binomial regression model
(8:51)
6840-10-07-6: Chapter 2 - LR - Linearly separable cases
(7:21)
6840-10-26-2: Ch.4.2 - Link Functions
(19:20)
6840-10-05-4: Logistic regression - diagnostics - hat values
(4:20)